1,814 research outputs found

    Phase transitions in Lu2_2Ir3_3Si5_5

    Get PDF
    We report the results of our investigations on a polycrystalline sample of Lu2_2Ir3_3Si5_5 which crystallizes in the U2_2Co3_3Si5_5 type structure (Ibam). These investigations comprise powder X-ray diffraction, magnetic susceptibility, electrical resistivity and high temperature (120-300 K) heat capacity studies. Our results reveal that the sample undergoes a superconducting transition below 3.5 K. It also undergoes a first order phase transition between 150-250 K as revealed by an upturn in the resistivity, a diasmagnetic drop in the magnetic susceptibility and a large anomaly (20-30 J/mol K) in the specific heat data. We observe a huge thermal hysteresis of almost 45 K between the cooling and warming data across this high temperature transition in all our measurements. Low temperature X-ray diffraction measurements at 87 K reveals that the compound undergoes a structural change at the high temperature transition. Resistivity data taken in repeated cooling and warming cycles indicate that at the high temperature transition, the system goes into a highly metastable state and successive heating/cooling curves are found to lie above the previous one and the resistance keeps increasing with every thermal cycle. The room temperature resistance of a thermaly cycled piece of the sample decays exponentialy with time with a decay time constant estimated to be about 104^4 secs. The anomaly (upturn) in the resistivity and the large drop (almost 45%) in the susceptibility across the high temperature transition suggest that the observed structural change is accompanied or induced by an electronic transition.Comment: 7 figures, 1 table and 18 reference

    Uplift of Himalaya and it’s implications on the evolution of Indian monsoon

    Get PDF
    Abstract HKT-ISTP 2013 A

    Spin-lattice coupling mediated giant magnetodielectricity across the spin reorientation in Ca2FeCoO5

    Full text link
    The structural, phonon, magnetic, dielectric, and magneto dielectric responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This compound showed giant magneto dielectric response (10%-24%) induced by strong spin-lattice coupling across its spin reorientation transition (150-250 K). The role of two Debye temperatures pertaining to differently coordinated sites in the dielectric relaxations is established. The positive giant magneto-dielectricity is shown to be a direct consequence of the modulations in the lattice degrees of freedom through applied external field across the spin reorientation transition. Our study illustrates novel control of magneto-dielectricity by tuning the spin reorientation transition in a material that possess strong spin lattice coupling.Comment: 7 pages, 12 figure

    Modulated structure in the martensite phase of Ni1.8Pt0.2MnGa: a neutron diffraction study

    Full text link
    7M orthorhombic modulated structure in the martensite phase of Ni1.8Pt0.2MnGa is reported by powder neutron diffraction study, which indicates that it is likely to exhibit magnetic field induced strain. The change in the unit cell volume is less than 0.5% between the austenite and martensite phases, as expected for a volume conserving martensite transformation. The magnetic structure analysis shows that the magnetic moment in the martensite phase is higher compared to Ni2MnGa, which is in good agreement with magnetization measurement
    • …
    corecore